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ABSTRACT 

The past few years have seen the continuation of the shift from analog processing to digital domain processing in 
professional audio products.  There are still several analog sections of the box that remained purely analog.  Over 
time the performance of mixed signal components has improved significantly to the point that, once again, the 
weakest link in the chain could be the analog interface.  The purpose of this paper is to look at a few popular analog 
circuits that have a direct impact on the performance of professional audio applications. The circuits are explained 
with mathematical demonstrations.  The impact of real life implementations on the performance specifications is 
explored for each circuit. 

 

1. INTRODUCTION 

The electronic designs in the professional audio market 
have an analog line receiver of some sort at the analog 
inputs.  Low cost applications usually have unbalanced 
front ends, which means that one input is “hot” the other 
one is the reference or ground.  This type of design 
cannot reject common mode signals present in the signal 
wire as well in the ground pin.  The correct line receiver 
for professional audio market is one that has truly 
balanced input.  In this case the common mode signal is 
referenced to a third wire, the reference or ground.  A 
good line receiver can amplify the differential signal 
and reject the common mode signals.  The advantage of 
differential line receivers is that the ground wire does 
not carry signal and any currents flowing through the 
ground line do not interfere with the signal and sensitive 

audio circuitry at the receiving end.   Often the 
following circuit block, after the line receiver, is an 
Analog to Digital Converter (ADC).  The ADC inputs 
have particular requirements and a special driver is used 
to translate the large input signal swings to lower 
voltage levels and drive the converter inputs.  

There are a few classic designs of differential line 
receivers.  This paper presents the most commonly used 
topologies.  Frequently, the designers reuse older 
circuits without paying attention to the front-end 
performance or not being aware of the latest 
technologies.  The drawback could be that newer high 
performance ADC’s that have better specifications, can 
exceed the performance of older line receiver 
topologies.  Parameters that can be compromised are for 
instance noise, distortion and common mode rejection.  
A commonly used ADC driver circuit is presented and 
guidelines for proper design are explained.    
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2. LINE RECEIVERS 

Three line receivers are considered for analysis, all of 
them designed for balanced signals and to reject 
common mode signals.  These circuits are: the 
difference amplifier, the high common mode impedance 
amplifier for transformer-like performance and a fully 
differential front-end with common mode attenuation 
servo.  In an ideal world, the first two amplifiers can 
achieve extremely high common mode rejection while 
the last one is limited by the component value selection.  
However, only the high common mode impedance line 
receiver can maintain its performance under non-ideal 
conditions. 

2.1. Difference Amplifier 

The most commonly used line receiver is the ubiquitous 
difference amplifier that contains an operational 
amplifier, two resistors connected as a pad at the non-
inverting input and two resistors from output to the 
inverting input and then to the inverting input.  A 
schematic of such front end is shown in Figure 1.    

 

Figure 1  Difference amplifier 

The main advantage of this amplifier is its simplicity, at 
least in theory.  The realization of this circuit is an 
operational amplifier and four matched resistors.  For 
unity gain all resistors are equal in value.  In this case 
resistor networks can be used since there is a chance 
that all resistors match better.  However, professional 
line levels of +24 dBu can be greater than the amplifier 
power supply and the unity gain amplifier can clip.  To 
avoid clipping, +/- 20 V power supply rails are required, 
which can dissipate a lot of power.  For lower power 
supply rails, a gain of -6dB or -3 dB is needed.  The 
most common line receiver, and not necessarily the best 
choice, is the -6 dB version.   

The common mode rejection performance varies 
tremendously due to inherent resistor variation.   The 
Common Mode Rejection Ratio (CMRR), for the -6dB 
version, is better than 37.5 dB if 1 % resistors are used 
and better than 57.5 dB for 0.1 % resistors.  However, 
Printed Circuit Board (PCB) copper trace resistance, 
operational amplifier terminal resistance and other 
factors make the discrete implementation very difficult.  
Using better matched discrete resistor will not improve 
the CMRR because of the unpredictable resistive errors 
on the board.  The only solution to increase the CMRR 
is to use specialized integrated circuits that have the 
matched resistors on the die.  These resistors are made 
of thin film materials, such as NiCr or SiCr, which are 
very stable with temperature and over time.  The thin 
film resistors are fine trimmed using laser trimming to 
match down to 0.005 %, or 90 dB of CMRR.  This kind 
of performance is almost impossible (or very expensive) 
with discrete components.  The CMRR, in decibels or 
dB, of the difference amplifier can be calculated as 
follows [1]:  
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Equation (3) represents the total resistor error of all four 
resistors as a sum of individual resistor error. 

The CMRR performance of the difference amplifier is 
very good under ideal conditions, that is, if the lines 
connecting to the line receiver are truly balanced.  A 
balanced line means that the impedances of the two 
wires driving the line receiver are equal at least across 
the audio frequency spectrum [11].  This is the ideal 
condition under which the difference amplifier can hold 
its CMRR performance.    
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What happens if the lines are not balanced ? 

A 10 Ω imbalance drops the CMRR performance by 25 
dB.  Worse, if the line receiver connects to an 
unbalanced output driver that usually has a 100 Ω series 
resistor in the signal path, the CMRR performance 
drops by 45 dB.  In this case the end user has to be very 
careful in choosing the cables and the interconnects.  In 
live sound applications is very difficult to control the 
quality of the cables and matching of outputs and inputs.  
In order to improve the situation, the designer has a few 
choices.  One solution is to increase the common mode 
impedance.   The penalty is that the total output noise is 
going to increase as well and finally it reduces the 
dynamic range.  The common mode impedance can be 
calculated as follows (refer to Figure 1): 

The current into the non-inverting input is: 
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The current into the inverting input is: 
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Finally the common mode impedance is calculated as: 
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If R1 is not equal to R3, see equation (4) and (5), then 
the common mode currents into the two inputs are not 
equal either.  In this case even a balanced line cannot 
prevent the common mode signal to be transformed to a 
balanced signal that cannot be rejected by the amplifier.  
Therefore, it’s good practice to have R1 equal to R3 and 
R2 equal to R4.  In this case, the common mode 
impedance is: 

( )21*
2
1 RRZCM +=  (7 ) 

For most -6 dB audio line receivers available on the 
market today the common mode impedance is 9 kΩ 
[1][2][3].    Not a whole lot.  

There are other variations of the basic difference 
amplifier that extend the input common mode range to 
hundreds of volts while increasing the common mode 
impedance to hundreds of kΩ.  This can be done by 
replacing resistor R4 in Figure 1 with a “T” resistor 
network.  One end of the “T” network is connected to 
the amplifier output, the other end to the inverting input 
of the operational amplifier and finally the bottom leg 
connects to ground.  This type of circuit requires an 
operational amplifier with very high open loop gain 
since it operates at very high noise gain. The noise gain 
is the gain seen from the non-inverting input of the 
operational amplifier.  The drawback of high noise gain 
is low loop transmission gain.  The amplifier distortion 
and frequency bandwidth is directly proportional to the 
remaining loop gain.  Thus, the circuit bandwidth is 
reduced and the distortion at high frequencies is not 
very good.    

Best line receiver gain for highest dynamic range 

The common question that a designer is faced with is 
how to choose the line receiver gain to maximize the 
dynamic range.  The maximum input level for 
professional equipment is 24 dBu (or +4 dBu plus 20dB 
of headroom) and the typical power supply inside the 
unit is +/- 15V.  Browsing through the data sheets of 
such amplifiers [1][2][3] one can determine that the 
maximum output level is 21.5 dBu.  The output noise 
also varies from manufacturer to manufacturer 
especially for unity gain amplifiers.  The dynamic range 
measured as signal to noise ratio is the maximum output 
level in [dB] minus the output noise floor of the 
amplifier, also in [dB].   
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Manufacturer 1 Line 

Receiver 
Gain 

Max 
output 

Noise floor Dynamic 
range 

 0 dB 21.5 dBu -103 dBu 124.5 dB 
-3 dB 21.0 dBu -105 dBu 126.0 dB 
-6 dB 18.0 dBu -106 dBu 124.0 dB 
 Manufacturer 2 
 0 dB 21.5 dBu -100 dBu 121.5 dB 
-3 dB N/A N/A N/A 
-6 dB 18.0 dBu -106 dBu 124.0 dB 

Table 1 Dynamic range vs. line receiver gain for 
typical +/- 15V power supply and +24 dBu 
maximum input level. 

The table above shows the maximum signal to noise 
dynamic range for two Integrated Circuit (IC) 
manufacturers and different gains.  The best dynamic 
range is highlighted in bold face.  Interestingly enough, 
the designer can increase the dynamic range by almost 2 
dB by using the -3 dB line receiver.  Fortunately, such 
an amplifier is available from at least one IC 
manufacturer [3].  

2.2. High CM Impedance Amplifier 

The difference amplifier presented in the previous 
chapter has the main disadvantage that the common 
mode impedance is very low and its performance 
quickly degrades in real life application.  Users that are 
faced with large common mode signals use transformers 
to couple between signal processing units and other 
equipment.  The transformer has extremely high 
common mode input impedance and offers very good 
common mode rejection at low frequencies.  The 
drawback of the transformer is that the high frequencies 
common impedance, and therefore common mode 
rejection, is not as high as at low frequencies due to 
stray capacitances.  Another issue is that the distortion 
at low frequencies is not that great either.  The 
transformers usually add a “color” to the sound that it’s 
not always desirable.  Finally, transformers are bulky, 
heavy and the high performance ones are expensive. 

The solution to afore mentioned issues came in the form 
of an ingenious design [4], that exploits the benefits of 
the bootstrap and instrumentation amplifiers, see Figure 
4.  It is worth mentioning that this design is protected by 
US Patent 5,568,561.  The bootstrap is an old technique 
to increase the input impedance of an amplifier.  The 
input impedance at the amplifier input is connected 

between the input and instead of connecting the other 
end to ground, it’s connected to a replica of the input 
signal.  Essentially, the bootstrap is a positive feedback 
system.  To keep the system stable, the non-inverting 
amplifier that copies the input signal has to have a gain 
of less than one.   

The basic schematic of the bootstrap circuit is shown in 
Figure 2.   

 

Figure 2  Bootstrap amplifier. 

The theory behind the bootstrap amplifier can be 
explained by determining the equivalent input 
impedance at the input.  Summing all the currents at 
node Vb we have the following equation (refer to Figure 
2):    
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Equation (8) is solved for Vb as follows: 
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Input current Iin is calculated from the following 
equation: 

a

bin
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Finally, the input impedance is calculated by dividing 
the input voltage, Vin, to the input current, Iin, as 
follows: 



FLORU  Demystifying Analog Circuits
 

AES 118th Convention, Barcelona, Spain, 2005 May 28–31 
Page 5 of 16 

( ) ( )GRsC
RR

RRsC
RR

I
VZ

bb

ba

ba
b

ba
in

in
in −+

+
+

+==
1*1

1
*  (11 ) 

The input impedance is the sum of the two input 
resistors multiplied by a frequency dependent factor.  
The frequency dependent factor has a zero and a pole in 
the transfer function.  Since (1-G) is very small, the zero 
frequency is lower than the pole.  Please note that if the 
gain of the amplifier is considered unity, G = 1, then the 
input impedance transfer function has only one zero, 
which means that the input impedance rises with 
frequency without limit.  This is not a realistic 
assumption.  Although the gain of the amplifier is very 
close to unity, e.g., G = 0.999, it is important to consider 
it.  

 

 

Figure 3 Input impedance of bootstrapped amplifier vs. 
frequency. 

The zero and pole frequencies can be extracted from 
equation (11) as follows: 
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The minimum and maximum input impedance can be 
extracted from equation (11) at zero and infinite 
frequencies. 
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For a set of typical resistor, capacitor and amplifier 
values, such as, Ra = 12 kΩ, Rb = 24 kΩ, Cb = 220 µF 
and G = 0.999 we get the following zero, pole and 
impedances: 

Ω=

Ω=

=
=

∞=

=

MZ

kZ

Hzf
Hzf

fin

fin

p

z

12

36

30
09.0

0
 (14 ) 

One concern with the bootstrap technique is that if a 
capacitive source impedance is connected to the input, 
then the common mode transfer function could peak 
resulting in gain at the resonant frequency.  This 
behavior can void the advantages of the bootstrap 
reducing the common mode rejection at the peaking 
frequency.  It will be shown that by ignoring the actual 
closed loop gain, which is less than one, of the bootstrap 
amplifier, the results are not correct and that there is a 
tremendous difference between the ideal model and a 
more realistic amplifier gain closer to unity.   

Let’s assume that the source impedance Zs in Figure 2 
is of capacitive nature.  In this case: 

s
s sC
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=  (15 ) 

The transfer function can be calculated as follows: 
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Combining equations (11), (15) and (16) we can 
calculate the transfer function as: 
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In equation (17) we have the following definitions: 

The common mode resonant frequency CMω  is defined 
as:  

babs
CM RRCC

1
=ω  (18 ) 

The “Q” factor is defined as: 
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The α  factor is defined as follows: 
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The common mode transfer function with a capacitor 
connected at the input is a combination of a band pass 
and a second order high pass filters.  The α factor is the 
gain (or loss) of the band pass filter due to the finite 
closed loop gain of the common mode amplifier.  Please 
note that an ideal closed loop gain of one makes α = 1.  

From equation (17) we can calculate the transfer 
function value at the resonant frequency CMω  .  
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and the absolute value of the transfer function is:  

( ) 22 QjH CM += αω  (22 ) 

Equation (22) is evaluated for peaking at the resonant 
frequency.  The transfer function is tested if it can be 
less than one.    
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Equations (19) and (20) are substituted in (23).  Then 
the equation is rearranged to solve for the capacitor ratio 
Cb / Cs as follows: 
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Term (1-G) is of the order of 0.001 or smaller, and 
resistors Ra, Rb are close in value.  Thus, equation (24) 
can be simplified as follows: 
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Note that if the common mode amplifier is considered 
ideal with a gain of one, then the right hand term in 
equation (25) is infinite.  This means that the common 
mode transfer function is always going to peak at the 
resonant frequency CMω .   However, in the real model 
of the common mode amplifier there is a finite ratio of 
capacitors for which the common mode transfer 
function does not peak.   

One possible case is if the input of the bootstrapped 
amplifier is left open and the input connector has a 
capacitor connected to ground as an Radio Frequency 
(RF) filter.  Usually these capacitors are in the order 100 
pF.  Considering the typical values exemplified above in 
the text, to avoid peaking the capacitor ratio has to be 
greater than:  
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Typically Cs is 100 pF, which means that Cb has to be 
greater than 50 µF.  The recommended value for Cb is 
220 µF, therefore there is no danger of peaking.   This is 
especially important since the common mode resonant 
frequency is in the range of interest.  The resonant 
frequency can be calculated from equation (18) as 
follows:  
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babs
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Using the same values exemplified in the text the 
resonant frequency is 63 Hz.  

The table below shows the error in the common mode 
transfer function between the ideal model, where the 
common mode amplifier gain is one, and the more 
realistic model, where the common mode amplifier gain 
is less then one.  The error is computed at the resonant 
frequency of the common mode amplifier.  The 
numbers in the table below were calculated using 
formulae (19), (20), (23) and (27).  The component 
values are Cb = 220 µF, Cs = 100 pF, Ra = 12 kΩ and 
Rb = 24 kΩ.  

 
Parameter Ideal CM 

loop gain 
G = 1 

Real CM 
loop gain 
G = 0.999 

CMf  63 Hz 63 Hz 
α  1 6.81*10-4 

Q  699 0.476 

( )CMjH ω
 +57 dB - 6.5 dB 

Table 2 Absolute value of CM transfer function 
calculated using two models for the common 
mode amplifier.  See text for component 
values.  

Table 2 shows that ignoring one thousandth in the 
amplifier gain the results at resonant frequency can 
differ by more than 60 dB !!! 

Another possible case is when the input of the 
bootstrapped amplifier is “ac” coupled with a “dc” 
blocking capacitor.  A typical value for the coupling 
capacitor is 10 to 22 µF.   In this case peaking is 
possible but the resonant frequency is 0.2 Hz or lower, 
well below the frequency range of interest.  This low 
resonant frequency can generate a common mode “dc” 
pop that can take a few good seconds to settle.  
However, the difference amplifier, which follows the 
bootstrapped amplifier, can reject the “dc” transient, 
refer to Figure 4.  

Another note about the stability of the common mode 
closed loop is that although it is positive feedback its 
open loop gain is always less than one, especially at low 
frequencies where under special circumstances peaking 
may occur.  Also, the positive feedback is always less 
than the negative feedback at operational amplifiers 
OA1 and OA2. 

 

 

Figure 4 High common mode impedance line receiver. 

Figure 4 shows the entire line receiver schematic.  
Operational amplifiers OA1 and OA2 are the input 
buffers and OA4 is the common mode amplifier.   OA1 

and OA2 buffer both the differential and the common 
mode signals.  The difference amplifier OA3 and the 
resistor network around it, R1 through R4, reject the 
common mode.  OA4, resistors R5 and R6 extract the 
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common mode signal and buffer it back to the input to 
close the bootstrap loop.   

The circuit in Figure 4, with typical values as 
exemplified in the text, exhibits 48 kΩ of differential 
impedance, while the common mode impedance is 
better than 10 MΩ.  Practically, any impedance 
unbalance at the input does not alter the CMRR 
performance.  This way, transformer-like performance 
is obtained while maintaining very good distortion 
performance at low frequencies.  If circuit in Figure 4 is 
integrated on silicon, then the common mode rejection 
at high frequencies is highly improved due to tight 
control of stray capacitance on the die.    

2.3. Differential Amplifier with CM Attenuation 

Another popular line receiver is the circuit shown in 
Figure 5.  It’s a fully differential amplifier that can be 
followed by a difference amplifier or by an ADC [5].  
Operational amplifiers OA1 and OA2 buffer the 
differential and reduced common voltage signals.  
Operational amplifier OA3 is the common mode loop 
servo amplifier.  At a glance, this circuit might look 
similar to the high common mode impedance line 
receiver presented in the previous chapter that uses 
bootstrap.  Some designers are tempted to believe that 
OA3 is a bootstrap amplifier.  However, the differential 
amplifier in Figure 5 has a fundamentally different 
mode of operation.   

 

Figure 5 Differential amplifier with CM rejection 

Operational amplifier OA3 senses the output common 
mode voltage, buffered by OA1 and OA2, and outputs a 
voltage of opposite polarity to the input common mode 
voltage at node Vd.  The voltage at node Vd is such that 
nodes V1 and V2 are kept as close as possible to ground 
when common mode signal is applied at the input.  
Thus, the common mode voltage is attenuated.  If V1 
and V2 are always kept at virtual ground for common 
mode signals, the common mode impedance can be 
easily calculated as R1 in parallel with R2.  Because the 
voltage at node Vd is of opposite polarity to the input 
common mode voltage, OA3 actually decreases the 

common mode input impedance by a factor of (1 + 
(R3/R1)).  This mode of operation is exactly the 
opposite of bootstrap.  Also, it will be shown that the 
common mode attenuation is finite and it is dependent 
by the component value selection.  A subsequent stage 
connected after this line receiver, such as a difference 
amplifier or an ADC, can reject the common mode 
voltage even more.  This topology is usually 
recommended to drive ADC’s, which have additional 
common mode rejection [5].    

The resistor network at the input, R1, R2, R3 and R4 
attenuates the differential signal as well, and 
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configurations of -3 dB or -6 dB can be achieved.  Unity 
gain configuration is not possible with this circuit since 
the common mode attenuation is dependent on resistors 
R1 and R2.  The differential input impedance is the sum 
of all input resistors R1, R2, R3 and R4.  Typically R1 
is equal to R2 and R3 is equal to R4.  

The -6 dB configuration requires that all input resistors 
to be equal.  In order to compare it to the -6 dB 
difference amplifier, that has a typical 24 kΩ differential 
input impedance and 9 kΩ common mode input 
impedance, we need to set all input resistors to 6 kΩ.  
This way, the differential input impedance is similar.  
But, the common mode impedance is only 3 kΩ, about 
three times lower than the difference amplifier.   

The common mode attenuation can be calculated by 
writing the following set of equations (refer to Figure 
5): 
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The set of equations in (28) can be solved for V1 as 
follows: 
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Finally, assuming that the differential amplifier is 
symmetric, the CMRR is calculated as the ratio of the 
differential gain divided to the common mode gain as 
follows: 
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The differential gain is the attenuation of the input 
resistor network, R3 / (R1 + R3).  Substituting equation 
(29) in (30) we can calculate the common mode 
rejection as follows   
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Since R1 and R3 are close in value, the common mode 
rejection relies on the ratio of R5 to R6, which is half 
the closed loop gain of operational amplifier OA3.  In 
order to get decent CMRR, this gain has to be at least 40 
dB.  As explained in a previous paragraph, the available 
loop gain of OA3 is reduced by its closed loop gain 
increasing distortion and reducing the bandwidth.  The 
distortion is not really an issue here but the bandwidth 
could be.  Operational amplifier OA3 requires very high 
open loop gain.  Let’s say we chose an operational 
amplifier with an open loop gain of 80 dB and the ratio 
of R5 / R6 is set for 60 dB gain.  If R6 = R7, in Figure 
5, the closed loop gain of OA3 is 2 * (R5 / R6), in this 
case 66 dB.  The available loop gain is only 14 dB.  
Typically the dominant pole in the open loop transfer 
function is less than 10 Hz.   This choice of operational 
amplifier yields a usable bandwidth of only 50 Hz.  An 
operational amplifier with an open loop gain of 100 dB 
can increase the bandwidth to approximately 500 Hz.  

The topology presented here is a typical circuit that 
works great in the designer’s notebook, pretty well in 
the engineering lab under controlled environment and 
poorly in real life applications.  The first major issue is 
the very low common mode impedance.  A 100 Ω 
unbalance at the input, assuming ideally matched 
components in the circuit, drops the common mode 
rejection to only 35 dB.  The second major issue is that 
the common mode rejection is dependent on the 
matching of the input resistor network, R1 through R4.  
The only solution to get matched resistors is to make an 
integrated circuit that incorporates the resistors and the 
operational amplifiers.  As of today there is no such 
integrated circuit available.  Even if there would be an 
integrated circuit solution, the common mode 
attenuation is proportional to the closed loop gain of 
OA3.  The bandwidth of the common mode servo loop 
is also limited which makes this circuit not suitable for 
rejecting high frequency common mode signals.    

2.4. Summary of line receivers 

The difference and the high common mode input 
impedance amplifiers were presented with differential 
input and single ended output.  However, they can be 
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configured for differential output as well to drive the 
input of an ADC [12].  The table below shows typical 
performance of line receivers presented in the paper.  

 
Parameter Difference 

amplifier  
High CM 
impedance 
amplifier  

Differential 
amplifier 
with CM 
rejection 

Differential 
Input 
Impedance 

24 kΩ 
to  
50 kΩ 

48 kΩ 24 kΩ 
to  
50 kΩ 

Common 
Mode Input 
Impedance 

9 kΩ 
to  
25 kΩ 

10 MΩ 3 kΩ 
to  
6 kΩ 

Ideal 
CMRR 

90 dB 90 dB 40 dB 
to 
60 dB 

CMRR with 
an 100 Ω 
unbalance 
at the input 

45 dB 
to 
54 dB 

90 dB 35 dB 

Table 3 Typical common mode performance of line 
receivers presented in the paper 

3. ADC DRIVER CIRCUIT 

A typical ADC application circuit requires a filter 
capacitor connected between the inputs of the converter.  
The typical value of this capacitor is 2.7 nF [6][7][8], 
which means that in the case of a differential input each 
side has to drive the equivalent of 5.4 nF.  Also, most of 
the ADC’s have low power supplies voltages, usually 
+5V and ground or +/- 5V (older models).  Audio 
ADC’s have CMOS switches at the very input that work 
at relatively high frequencies.  The switching current in 
the stray CMOS capacitor is in the order of milliamps at 
megahertz switching speeds.  All of the above set the 
ADC driver requirements as follows: 

• Driver has to attenuate professional line levels to 
ADC’s limited input range, typically from about 20 
Vrms down to about 2 Vrms. 

• Driver has to drive a significant capacitive load, at 
least 5.4 nF. 

• Driver should be able to absorb high frequency 
current spikes.  

• Driver should have very low output impedance in 
order to maintain the ADC distortion at a minimum.  

This paper addresses the requirement of driving 
capacitive loads and explains a widely used driver 
circuit with design guidelines for component values. 

The circuit in Figure 6 shows an ideal operational 
amplifier, OA1, which is driving a capacitive load, CL.  
The open loop gain of the operational amplifier is A(s).  
The resistance in series with the output, r0, models the 
output resistance of the amplifier.  At low frequencies 
this resistance is very small and it doesn’t matter.  
However, at higher frequencies where the loop gain of 
the operational amplifier is lower, the output impedance 
starts to rise and it adds yet another pole in the negative 
feedback of the amplifier.   The gain of the circuit in 
Figure 6 is set by the feedback network beta ( β ).  The 
theory remains the same for any gain, the loop gain 
decreases even more if there is less negative feedback.  

 

 

Figure 6 Typical operational amplifier driving a 
capacitive load 

The next figure, Figure 7, shows the relationship 
between the open loop gain, closed loop gain and loop 
gain (also known as loop transmission).  If low closed 
loop gains are used then there is plenty of loop gain.   
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Figure 7 Operational amplifier open loop gain, closed 
loop gain and loop transmission 

The stability of the operational amplifier can be studied 
by analyzing the characteristics of the loop 
transmission.  The relationship between all the gains in 
Figure 7 is shown in the following equation [9]: 

)(*)(
)(*1

)()(

sAsLT
sA

sAsG

β
β

=
+

=
 (32 ) 

The loop transmission is the product )(* sAβ .  β  is 
the feedback factor that sets the closed loop gain.  For 
unity gain 1=β .  The open loop gain function, A(s), is 
modeled by a one-pole transfer function as shown in the 
next equation [9]: 

0

0

1
)(

p
s

AsA
+

=  (33 ) 

Replacing A(s) as shown in equation (33) in equation 
(32), the closed loop gain becomes: 

( )00

0

0

*1*
1

1*
*1

)(

Ap
sA

AsG

β
β

+
++

=  (34 ) 

The closed loop gain bandwidth is the open loop pole 
multiplied by the factor ( )0*1 Aβ+ .  The higher the 

open loop gain the higher the closed loop bandwidth, 
and the higher the closed loop gain the lower the closed 
loop bandwidth. 

 

 

Figure 8 Operational amplifier loop transmission gain 
and phase 

Figure 8 shows the loop transmission gain and phase.  
When the phase reaches -180 deg, the overall feedback 
becomes positive and the operational amplifier 
oscillates.  As a rule of thumb, the phase should be 
greater than -135 deg, ideal -90 deg [10].  

The problem: driving capacitive loads 

With the above notes in mind we’ll proceed to compute 
the effect of the load capacitor, CL, on the loop 
transmission of the operational amplifier.  In order to 
simplify the equations we set 1=β .  From Figure 6 we 
can determine the following equations: 

( )

L

in

Csr
VV

sAVVV

0

01
0

001

1

)(*

+
=

−=
 (35 ) 

Solving the above equations, we can determine the 
closed loop gain as follows: 

A0 

-90 deg

Gain Loop transmission, LT(s)

P0 *A0 
Freq 

P0

Phase

-45 deg

A0 

G0 

Gain Open loop gain, A(s) 

fu

Closed loop gain, G(s)

Loop gain 

Freq 

P0 

1 / Beta
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L

L

in

Csr
sA
Csr

sA

V
VsG

0

00

1
)(1

1
)(

)(

+
+

+
==  (36 ) 

We make the following notation: 

L
CL Cr

p
0

1
=  (37 ) 

Substituting (33) and (37) in (36), the loop transmission 
can be calculated as follows: 









+








+

=

CLp
s

p
s

AsLT
1*1

)(

0

0  (38 ) 

Note that the load capacitor and the output series 
resistance form an additional pole in the frequency 
response.  The absolute value of the loop transmission 
can be calculated from (38) as follows: 

( ) 







+++

=

22
0

2
2

0

4

0

11*1

)(

CLCL pppp

AjLT

ωω
ω

 (39 ) 

Equation (39) can be solved for 1)( =ωjLT  and the 
frequency at which the loop transmission gain drops to 
one can be found as follows:  

00 App CLLTu =ω  (40 ) 

The location of LTuω  is not very well determined.  It 

could be between the two poles CLLTu pp << ω0 or it 
could be greater than the second pole 

LTuCLpp ω<<0  .  The location of the unity 
frequency is important in determining the stability of the 
operational amplifier.  We need to look at the phase of 
the loop transmission.  The phase can be determined 
from equation (38) as follows: 





















−









+

−= −

CL

CL

pp

pp
tg

0

2
01

1

11

ω

ω
ϕ  (41 ) 

If we assume that:  

CLpp <<0  (42 ) 

 then, at frequency  0p=ω the phase is: 

( ) deg4511 −=−= −tgϕ  (43 ) 

The phase margin at the loop transmission unity gain 
frequency can be calculated by substituting equation 
(40) in equation (41) and considering equation (42).  











= −

00

1

Ap
ptg CLϕ  (44 ) 

Note that the square root term in parenthesis, in 
equation (44), is always positive.  Since the phase is 
already below -45 deg, and because we are looking at 
frequencies above pole 0p , it means that the phase can 
be anywhere in the range of 

( )deg180deg90 −÷−∈ϕ .  In other words it could 
be ok if it’s closer to -90 deg but it could be trouble if 
it’s closer to -180 deg.  Let’s take a closer look.  

If the loop transmission unity gain frequency is between 
the poles, CLLTu pp << ω0 , it means that the 

following statement is true: CLpAp <00 .  This can be 
determined from equation (40).  In this case the square 
root term in parenthesis, in equation (44), is positive and 
greater than one.  Therefore the phase can be in the 
range of ( )deg135deg90 −÷−∈ϕ  .  That is good, 
it means that the operational amplifier is stable.  In 
Figure 9 there is a graphical representation of the pole 
locations and phase with respect to loop transmission 
unity gain frequency.  
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Figure 9 Operational amplifier loop transmission gain 
and phase for CLLTu pp << ω0  

 

If the loop transmission unity gain frequency is greater 
than both poles, LTuCLpp ω<<<0 , it means 

that: CLpAp >00 .  Again, this can be determined from 
equation (40).  In this case the square root term in 
parenthesis, in equation (44), is positive and less than 
one.  Therefore the phase can be in the range of  

( )deg180deg135 −÷−∈ϕ  .  That is bad, it means 
that the operational amplifier could oscillate.  In Figure 
10 there is a graphical representation of the pole 
locations and phase with respect to loop transmission 
unity gain frequency. 

Figure 10  Operational amplifier loop transmission gain 
and phase for LTuCLpp ω<<<0  

The solution to driving large capacitive loads 

 

Figure 11 Capacitive load driver 

The circuit in Figure 11 shows a clever topology that 
can extend the capability of a regular operational 
amplifier to drive larger capacitive loads.  Although the 
circuit adds two resistors and one capacitor, the 
mathematical analysis is not trivial.  Consequently, 
many designers prefer to copy an existing design that 
has being proved to be stable for a specific 
configuration.  

A simple analysis of the circuit shows that the addition 
of capacitor C from the output to the inverting input 
counteracts the phase shift due to capacitive load CL.  

A0 

-90 deg 

Gain Loop transmission, LT(s)

SQRT (P0 *PCL*A0 ) 

Freq 

P0

Phase

-45 deg 

PCL 

-135 deg 

-180 deg 

A0 

-90 deg 

Gain Loop transmission, LT(s)

SQRT (P0 *PCL*A0 ) 

Freq 
P0 

Phase 

-45 deg 

PCL 

-135 deg 

-180 deg 
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In other words, the pole due to capacitor CL is 
annihilated by the zero introduced by the capacitor C.  

In order to determine the transfer function of this circuit 
we can write the following equations:  

( ) )(*01 sAVVV inin −−=  (45 ) 

( ) sCVV
R

VV
r

VV
in *02

1

002

0

0201
−−+

−
=

−
 (46 ) 

( )
2

0
02 *

R
VVsCVV in

in
−

=− −
−  (47 ) 

2

0

1

002
0 *

R
VV

R
VVsCV in

L
−

+
−

= −  (48 ) 

The set of above four equations, (45) through (48) can 

be solved to extract the ratio 
inV

V0 , which represents 

the transfer function.  The transfer function is shown in 
the following equation:  
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+++++
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 (49 ) 

Although equation (49) is complex one interesting 
feature can be extracted that might help understand 
how this circuit works.  If the capacitive load is very 
small, for instance CL = 0, the entire equation 
becomes equal to equation (32), which is the basic 
transfer function of a non-inverting unity gain buffer.  
In this case, capacitor C and the additional resistors 
R1 and R2 are totally transparent.  This means that 
the contribution of C, R1 and R2 is only activated by 
the presence of the load capacitor CL.  

Comparing equation (32) and (49) we can extract a 
few components: 

The feedback factor β : 









++

+
)(*1

1
21

21
2

RRsC
RRCCs L  (50 ) 

Open loop gain: 

( ) [ ] ( )21210

21

1*)(*1*1
)(*1*)(
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LL +++++
++

 (51 ) 

The loop transmission equation is computed by 
multiplying equations (50) and (51).  Rearranging 
terms we have the following equation: 
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If we ignore for the moment the output resistance of the 
operational amplifier, r0 = 0, the loop transmission 
becomes: 
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The second term in equation (53) is the transfer function 
of a parametric equalizer that always introduces a notch.  
Equation (53) can be written again as follows: 
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where  

21
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=ω  (55 ) 

21

21*
RR
RR

C
CQ L

+
=  (56 ) 

21

1*1
RR

R
C
Ck L

+
+=  (57 ) 

In order to keep the loop transmission as smooth as 
possible, the k factor needs to be as close as possible to 
one.  This means that: 

121 *)(* RCRRC L>>+  (58 ) 

The notch in the loop transmission affects the phase also 
by pushing the closer to –180 deg.  It is good practice to 
increase the notch frequency above the unity gain of 
function A(s), which is (p0 * A0).  A rule of thumb is to 
design the notch frequency at least 20% higher.    

If the output resistance of the operational amplifier is 
taken into consideration, then the frequency response of 
the parametric equalizer is not that clean, since the low 
pass, denominator in (53) is shifted down in frequency 
with respect to the high pass, nominator in equation 
(53).  In this case the loop transmission has a ripple in 
the frequency response rather than a notch.   The 
resonant frequency of the low pass is: 



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RR
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Again, to keep all these disturbances above the unity 
gain frequency of the loop transmission, we to set the 
following conditions:   

200 ω<<Ap  (60 ) 

which means: 

1*1**
21

21
02100 <<


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

 +
+

RR
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Another design formula but not as critical is to keep 
factor k as close as possible to one.  This means: 

)(*)(* 1021 RrCRRC L +>>+  (62 ) 

If the output resistance r0 is not known we can assume 
an average value of 75 Ω.  

Formulae (61) and (62) are design guides for the 
capacitive load driver shown in Figure 11.  The designer 
can set either one resistor and determine the other 
components or set the capacitor and determine resistor 
values.   

4. CONCLUSION 

The paper presented several analog circuits commonly 
used in the professional audio applications.  A group of 
three line receivers were analyzed from the functional 
point of view with mathematical demonstrations.  Real 
life applications were considered to reveal the capability 
of each circuit to maintain its performance.  It was 
shown that only the high common mode input 
impedance line receiver could hold the common mode 
rejection specification under ideal and non-ideal 
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conditions.  The formulae presented in this section 
provide the designer good guidelines for topology and 
component value selection.  The last section presented a 
ubiquitous ADC driver that is difficult to analyze.  
Although it has only four or five components, the 
mathematical description of the circuit functionality is 
complex.  Formulae were derived to assist the designer 
with proper component type and value selection.   
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